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This paper presents a simple method of allowing for un-— 1

certainties in the constant terms (i.e. right hand sides) of
a linear prozramming problem, and hence producing realistic

Y'ut‘ety m.argins"in the solution. This is done by fitting a
mixture of uniform distributions to the assumed distributions

of these rigiht hand sides, and using a particular quadratic

prozramming alzorithm. ( ) \



B THE USE OF QUADRATIC PROGRANMING IN STOCRASTIC
E LINEAR PROGRANNING

1. JNTRODYCTION
It 18 well known that linear programming has an uncompro-

il

mising addiction to basic solutions. This means that it will
urge us to "go all out” for our odbjective, and cannot be used
to estimate the "safety margins” that often have to be provided
i’; in prectical situations to guard against uncertainties of one
. sert or another. As Dantzig (1956) potnted out, stochastic
-‘-‘fw 1ineer ’i'ocrﬂn 1s tho' theoretical answer to this prodlem,
" But it does not seem to have been applied extensively. This
. .__,}0 prebably because the computatione involved are usually rather
- '*“1*7 and the available data on chance effects are rarely
. | peveise eneugh to support a heavy computation.
H p purpese of this paper is to show that an important
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_ u‘h‘ 8 standard quadretic progremming algorithm. As far as

-- l " this algoritim has not yet been progremmed for a computer,
- u I hepe that it will be in the not too distant future. It

.y M then be worth widle to feed in estimates of the un—

é’ m and their conseguences, into the computations,

oo gp. 10 these estimates are Qquite crude.

~ The clase of prodlems considered here nas been discussed
1 ;.;-” m mw.‘ Mt.ig (1955), Beale ‘1955). '01'8‘“0" and
Dantsig (1956), Rlmeghrady (1959), (1960), Dantzig and Madansky

‘j.-. iiuaale il



(1960), and Madansky (19<0).

The nonstocrastic version of the model contains equations

of the fom
(1) 24X = by

where £££ is some linear function of the variables of the
problem, denoted collectively by the vector X and where b1
is a number that one pretends ls known exactly when it really
is not. Por example, it may be the volume of scles in some
future time-period. The problem 1s to choose a nonnezative x
satisfying all these equations so as to minimize some linear
functién e'x.

In the stochastic version of the model, the b, are rezgarded

1
a8 random variables with known probability distributions. The
vector x has to be chosen before we know the actual values of
the bi‘ but\we are no longer required to satisfy the equations
(1) cxnétly. Instead we have a penalty of r:(z 0) for each
unit by which §i£ falls short of bi' and a peralty of r:(z 0)
for each unit by which iié exceeds bi' to be added to the direct
cost g'z. This penalty may represent a tangible loss, such as
failure to sell one's goods because the demand is inadequate,

or an intanglible loss of zoodwiil caused by fallure to meet a

requirement, or a combination of the two. The problem i{s then

to cnoose a nonnegative P that minimizes the expected total cost
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where p1 denotes the mean value of the penalty incurred on

the 1-th equation. To represent f‘ msthematically, we write
E (1) in the form

(3) &&= ¥y = by,
(¥) Yy * ¥ - Y3, Y3 20, 33 20, \
R P, = BIf] 5 + 1] ¥}).

In practice there will often be no penalty cost 1f y, > O,
. so that f] = 0. The nonstochastic model would then normally
' .mr in the form gix > b,.

e 1

~ In fact it is convenient to reduce the general prodlem
L to one with {7 = 0, by adding I} times equation (3) to equation
© (2). Ve then have

b
3 .Ir

'-F'!I. l‘il-

'f_ -;. r’ 28 *
(6 we-zle (g eIrg) eIy

Y

I-*'
*M ‘1 denotes the mean value of b,, and
W 1*’;“"‘.?‘: . + 4

1_‘...

- It 1s perhaps worth noting that, although we have assumed

g v

FM l": and f; are both nonnegative, we really only require
. that f: + f, be nonnegative to Justify the mathematics.
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Given a problem with fI » 0, 1t 18 convenient to write

(8) ¥y =By - BE

and to refer to 51 as the safety margin, or margin, in the i-th
constraint. The essential contribution of the stochastic
feature of thie model is to provide a means of estimating proper
values for these margins. In the nonstochastic model they are
zero on all the operative constraints.

Another general point to be noted is that the correlations
between differe:nt b1 do not enter the problem. They have no
ef7est on the mean value of the penalty cost — althouzh of

course theyv could have an appreciable effect on its variance.

3. EXISTING METHODS OF SOLUTION

-

Methods for solving these problems are known. If all the
probability distributions are discrete, any 2-stage linear
programming problem can be reduced to a vast linear programming
problem, which can nevertheless be solved using the decomposition
principle of Nantzig and Wolfe (1960), as Dantzig and Madansky
(1960) have pointed out. The simple type of penalty cost con-
sidered here is easier than this. It leads immediately to a
convex separable nonlinear objective function, which can be
handled by the metnods of Charnes and Lemke (1954).

Elmaghraby (1960) has sugzested that a continuous dis—
tribution function could be handled using the Lagranzian differ-
entlal gradient method of Murwicz (1957). But the
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iimited computational experience with these methods is not
very eacowreging.

A. _THE PROPOSED METHOD OF SOLUTION

The starting point for the approach proposed here is the
fact, noted by Damtzig (1955), that if the random variabdle
.1 has & uniforn (rectangular) distribution over some specified
reage then the odjective function is quadretic. This follows
from the fact that (assuming q e 0), d4P,/d§, equals minus {7

times the prodadility that Yy < 0.

In fact we find that if

b, is wmiformly distributed between 51 -r, and 51 + Ty, then

ri-o

ry=-7,

P - f q:,};at
=%
--f1 ¥,

by

if

ir
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This function, plotted against ii, looks as follows.

A,

And it turns out that this function can be represented very

simply, by writing

(9) Vi = Ty ¥ Xy T X T X0
X131 20 X540 205 %54 20,

(10) Pi = 'PI ()(21 + x;i/qpi)'

In other words the corstraints (1) or (3) are replaced by

(11) 2! +x,, =0
Ny

ox

- X + X

11 el

and (2) 1s replaced by
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(12) Toagc'x+ ffi(xa1 + x}ﬁ/%rl).

To verify these formulae, first consider the situation
when ')71 > ry. Then it 1s clear that we can put x,, = Xy ® 0,
and P, = O, as it should be. Now suppose that ?1 < ry. Then
we cannot put Xy = x}1 « 0, and P1 will have to be greater
than zero. But we would be crazy not to put X4 = 0, since a
positive Xy4 would involve an unnecessarily large Xoq or Xqq
at some extre expense and no benefit. 8o we put X4 ® 0 and
make up the difference between ?1 and r, by x,, + Xy e Now
“‘/3!21 - £, and bri/axn - Ixn/?ri. S0, 1f we have to
increase Xy ¢ xn. it is cheaper to increase x31 ir x31 < 2r1.
and otherwise it is cheaper to increase X,4+ Hence, as '9'1

decreases from Py ’1 increases quadratically to r, when

i
¥, » -r;» and thereafter P, increases linearly. In fact p, 1s

repregsented faithfully in all cases.

If it 1s more convenjient, we can handle a problem with
rt 4 0 airectly, by writing
b §

(13) g o fIx)) + fxy) = f3xyy + (1] "D"gi/""i‘

The prodblem of minimizing T subject to these constraints
is a typical quadratic programming prodlem in wiiich the number
of quadratic terms equals the number of corstraints with random
right hand sides, which is almost certainly much smaller than
the total number of variables in the problem. The problem is



therefore suited to the algorithm outlined on pp. 235-236 of

Beale (195C). This 1s essentially the algorithm presented by
Beale (1955) and more fully in Beale (1959). The only difference
is that the obJjective function is stored, not as a vast square
matrix, but as a set of (r+l) linear forms lo. 11, « v lr,
it being understood that

+ % 12 * e # %'Xi.

Ta 1

0

S0 we can deal with uniformly distributed right hand sides
fairly easily. In some situations we may know so little about
the true distributions of these right hand sides that such an
assumption is as good as any. But in other situations this
will not be very satisfactory. Por uxample, suppose we have
a production scheduling problem in which sales are treated as
random variables, but we wish to lay down the production schedule
in advance. Then the nonstochastic model will contain some

constraints of the form

I+ R +R,  2>38; +5;

representing tne facts that initial inventory plus total pro—
duction up to the end of any time-period .anust not be less than
total sales up to the end of the time-period. Now we might
possibly assume that S1 nas a uniform distribution. But it
would nhardly be consistent to assume that S1 + 32 also had a

uniform distribution.
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A possibly more fundamental ot jection to the uniform
distribution is that it assumes that there 1s no danger that
the random variable will differ from its mean by more than
1.732 standard deviations. And yet it is clear that in some
situations wider safety margins are needed.

But now we observe that the analysis can be carried through

if the distribution of b, 1s a mixture of a small number of

1
uniform distributions almost as ~asily as if it is a single

uniform distribution. Suppose that there is a probability p1J
thatb1
. riJ' for Jol, «os, kl’ Then if we replace the i-th con-

is uniformly distributed between nij'— rij an. .1J

straint by the k, constraints

i

ol S ¢/ Sal TYR L TR TT R TR A YL
we have

" 2
(15) T=g'x+ 'y ?1 Pyg (Xpgy + X544/ 4)-

This approach would be unattractive if we nad to use a
large value of ki‘ i.e. a large number of uniformly distributed
components, for each constraint wit: a random right hand side.
One might think, for example that several components would be
needed to approximate a normal frequency function by a step
function. But the penalty cost is not represented by the
frequency function, but by the integral of the cumulative dis-
tribution function. And the process of integrating twice

i e
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smooths out the corners in the approximation in a most gratifying
way. An approximation (fitted by the method of moments) to

the normal distribution by Just two uniform distributions gives
an expected penalty cost that is correct to within 158 for

any margin less than 1.5 standard deviations. Por a margin
between 1.5 and 2.5 standard deviations the approximation
exazerates the expected penalty cost by up to 50#. This may
seem an undesirably large exaggeration, but it would arise
equally 1f one used a genuine normal distribution with a
standard deviation overestimated by 5. So in practice 1t

will often be unrealistic to try for greater precision than
that ziven by two uniformly distributed components. The de-
tails of the method of fitting are discussed in the appendices,
the results for a normal distribution being 1llustrated in
Pigs. 1 and 2.

We therefore need Just one extra constraint, and two
quadratic variables in the objective function, for each con-
straint in t-e original problem with a random right hand side.
Since this will usually apply to not more than half the constraints,

this is not a large addition.

5. THE RELATIONSHIP WITH CHANCE-CONSTRAINED LINEAR PROGRAMMING
It 18 of interest to compare this "2-stage" approach to

the problem of unknown right hand sides with chance—constrained
prozramming, introduced by Charnes, Cooper and Symonds (1958).
Of course this problem is not tne most general possible problem

for elither crnance—constrained or .—stage linear programming;
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but it 1s often illuminating to compare different approaches
with reference to a specific simple class of problems.

One difference is that the 2—stage program minimizes the
total cost, consisting of a direct cost and a penalty cost
representing the average level of fallure to satisfy the original
inequality constraints. In chance—constrained programming one
pre-selects a tolerable long—-term failure level, and simply
minimizes the direct cost without exceeding this failure level
on the average. Such an approach may be advantageous 1f the
penalty costs are hard to assess Qquantitatively. Po: our pro-
blem it can easily be incorporated into the 2—-staze model by
using parametric programming. As Beale (1959) indicates,
parametric Quadratic programming 1s straightforward as long as
the parameter i1s confined to the right hand sides and the linear
part of the objective function. To apply 1t in this context

we must therefore keep the penalty cost function fixed, and

o ;{:gww_—;? .

gradually scale down the direct cost to represent a gradually

increasing relative importance to be assigned to failure.
Corresponding to each parameter value, one can compute the
direct cost and the averaze level of infeasibility, measured
by the average penalty cost incurred. One can then select that
parameter value corresponding to the selected tolerance for
infeasibility.
But the more fundamental difference between 2—stage and
h chance—constrained programming 13 that, for any ziven values

of the variables and the random elements, the infeasibility is

.hﬂiiiﬂ*“
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measured Iin cnance—constraired programmin: essentially by the
number of constraints that are violated, and not by the extent
to which they are violated. (Actually this is an oversimpli-
fication. Violations of some constraints may have to be re-
garded as more serious than violations of others, to allow the
overall probabilities of violating different constraints to
balance in an optimum program.) The Qquestion of which of these
is the more reasonable measure must deperd on the application.
Madansky (1960) suggests an alternative form of chance—con-—
strained prozramming in which the infeasibility is measured by
whether or not all the constraints are satisfied simultaneously.
To apply this to our problem, we would need to know the Joint
distribution of all tre random variables, whereas the marzinal
distributiors suffice for the other approaches.

It 1s possible to compromise between our formulation of
tt.e problem and cnance—constrained prozgramming, by accepting
our measure of irfeasibilityv, computing the parametric family
of optimum solutions for different relative weights on cost and
“easibility, and then selecting from this family the solution
with a speclified average total number of violated constraints.
In some circumstancesa this mizht be a very practical procedure,
vivinz an easil, compretiersible 1. {indirect control over the

level of infeasibility.




- 3 >

g

¢
|
E;

N TE R

L % 2

AP X1

APPROXIMATING A SYMMETRICAL DISTRIBUTION BY A
MIXTURE OPF UNIPORM DISTRIBUTIONS
To apply the methods of Section &, the assumed distribution
for the random variable b must be approximated by a mixture of
& small number of uniform distridbutions. It is ratural to use
the method of moments to define this approximation. This is
& somewnat arbitrery caecisior, but it seems natursal, bdbecause
(a) the moments of the given distribution can usually be
readily evaluated, and
(b) 1t tends to emprasize the tails of the distribution,
where a good fit is most important.
The problem is greatly simplified 1f D has a symmetrical
distribution. It is then clear that we should make t e mean
of each component equal to the mean of the distributior, and 1t
only remains to choose the proportions Py and half-ranges ry
to be allotted to the different components. With k -omponents,

we can fit up to the (4k - 2)-th moment, and the equations to be
satisfied are as follows:

291 S |

- 2

Py Ty -,
4

P, = Sy
g - 2
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where u, denotes the i—th moment about the mean of the (symaetric)

distribution being fitted.

e

writing ry e Al, (21 + I)u21 - Vv,, We find that our

equations reduce to

I".pi s 1
.‘pi Ai - Vl
f‘ 2k.i..

There are the standard formulae for the wecights and
ordinates for Gauss—type quadrature formulae. For convenience
we record the solutions for ke 1, 2 or 3.

Uk.l. kl.vl. pl.lo

If k= 2, Al and 12 arc the roots of the quadratic equation

x X 1
v, vy 1 - 0,
s Y2

pl - (Vl - AQ)/(AI - k2)

92 a (Vl -_ hl)/(lz - Al).

If k= 3, A, Ae and x3 are the roots of the cubic equation

1




P1= (Y2 = 100 +33) 4 000)/00 = 2)(2, = 2y)
P2 = (Y2 = ¥1(0y ¢ 23) ¢ A03)/ (A, = 2 ) (2, - A3)

For a normal distribution with variance 02. Vi = 1.302,

'2 L 103‘~’ VJ L 1.305.706. V. L 10305.7.908. vs - 103.50709-11010.001

and we have the follcwing results.

k Py

Y4
1 1.73210
2 0.1838 2.85700
O. 8162 1.35560
3 0.01 3.75040
0. 3486 2: 12889
0.6400 1.1584¢

The fitted frequency functions are Plotted in Fig. 1,
and the resulting avsrege penalty costs, assuming o o 1, 2'; -1,
!': e 0, are plotted on a logarithmic scale in Flg. 2. It will

be seen that the single uniform distridution (k = 1) gives a

very adequate fit for Barging less than o, but undcrestimates
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the penalty for larger marzins. The mixture of 2 unifom
distriouticns (k = 2) gives an adequate fit for margins less
than 2.50, and this should be satisfactory for most practical
purposes. The improvement obtained by taking a third component
(k = 3) 1s not spectacular. One gets an adequate fit right

out to 3.50, but there is an awkward trough in the curve around
2.30 where the penalty is underestimated by 344%. This 1s per-
haps because the tenth moment, which is used to fit tnis mix-
ture, gives too much weizht to the extreme ta‘ls of the dis-
tribution. A better fit over a somewhat shorter range of
margins could perhaps be obtained by fitting the moments of

a trurcated normal distribution.
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APPENDIX 2

APPROXIMATING AN UNSYMMETRICAL DISTRIBUTION
BY A MIXTURE OF UNIFORM DISTRIBUTIONS

-

The problem of fitting a mixture of uniform distributions
by the method of moments to an unsymmetrical distridbution seems
to be much more awkward than fitting a symmetrical distribution.

We now have to choose 3 parameters for each component: the

=T W Ty T 1

w

proportion Py the mean my and the half-range ry. With k com—
ponents we can therefore fit up to the (3k - 1)-th moment.

g——

Without loss of generality we can assume that the mean of the
distribution to be fitted is zero.

The r~th moment of the mixture is given by

T !r_LIT ((. )r¢l = "1 . ri)r+1).

Ir (T denotes the r—th moment about the mean of the distribution
to be fitted, we therefore obtain the following equations for
fitting 2 components:

P +p, .1
A px-l L 2 92I2 s 0
py(my + § 3) + Py + 3 13) -,
: (A2.1 E £
Pl(l3 + mry) + pz(ng + m2 - iy
91(' + 2n§r§ + 5 1) + p,‘,(m2 * 2n2r + 5 r2) - “‘
10 3.2

py(m3 + ¥ mry ¢ nlr ) + py(m3 + ¥ rs + -.‘,rz) - uge
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There does not seem to be any neut way of solving these
equations. But we can tackle them by solving the first 2
equations for Py and ) 2 in terms of m and My, substituting
these values into the 3—rd and 4-th equation and solving for
ri end rg in terms of my and m,, and then substituting all
these values into the 5-th and 6-th equations to determine my

ard m, . Ve find that

(A2.2) P = —mé/(ml - "32)’ Py = ml/(ml - m?)

|
4
< ‘niuﬂiii

i

e ol el

(A2.3) ri - (- 52 + My ¢ 2mm, — mi), rg - (- ;% + 4, ¢+ 2m.m, - Ig).

"2

When we substitute these values into the last 2 equations

of (A2.1) 1t 1s corvenient to write

(A2.4) MNemem, e mm,.
The equations then reduce to

2
(A2.5) Ay ¢ A5 ¢ AN =0

- p 3
(A2.6) Aog + Ay h + Ay 00 + Az}ll - 0,
where

Ao = *@ + (9“3 = Suy ), - 12“2"5 - 16’*3

Ajy =+ 35,

e

- ¢ uk2,

Ao



Aao = (18ugey — Sugh, + 8uy)
Mgy = = 5 - 12103 - 168
Ay = + Wy,

Myy = 4 N5,

We can manipulate these equations to solve for A. in

1
terms of 52. and obdbtain the formula

3 - aul _ 2 3
(2.7) 3y = u3 + ‘12“" asg?)xz ® (35_2 %)12 + 8‘2’12 .
A (6uy + (38 - M5)N,)

Finally, substituting this back into (A2.5) we obtain a

sextic equation for ‘2’ which can be written as

(a2.8) ay ¢ &M, + uzlg + a,lg + a“l; o a5\g + aélg = 0,

where

8 = lﬁug.

8 80u;u“ = liiugu;.

%2 = 168ug - 2350 + 9auSuTu, ~ 76wy - BLY,

8y = 2bQuyuyls — b32udusug — 1257 + 67527 - 1200054,
- 12155, - 12803 + 216032 + Te90S,

a = }Gug — Whouaug - 300u,u5 - 32m§ua + 1oem§uu

+ T2u5u3 - 9723,
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s 2 2 2 %
a5 = 192uyug — 400u, + lhbouzu, — 3BMuuy - 1296u,,

86 = 25&?- ﬁ

The suggested computational procedure is therefore as

-

- - 1:{':‘.1
Ricss e hoi ¢

.‘.
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follows:

&

1. Compute the coefficients of (A2.8), and find a negative real

e

root of the equation. If there are no negative rvots, then the

&
.

problem is insoluble. If there are any, then there must be an

even number. It scems likely that the smallest in absolute

..i.ql.f'i

value will be appropriate, but this is not exactly clear. jg
2. Given the value of A,, deduce \, from (A2.7). '!

3. Mnd the roots of the quadratic equation

x2 - llx ¢+ 12 s 0.

¥ -

These are my and m, .

e

4. Deduce p,, P,, ri and r; from (A2.2) and (A2.3). Since

l2 <0, my and m, must have opposite signs, so P and n, are
certain to be positive. But ri or rg might prove to be negative, 3
indicating that the problem has no solution, at least for this

value of k2. ;
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Fig. 2— Approximating @ normal distribution
by o mixture of uniform distributions:
Average penalty costs (es1, {71, 11=0)
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